If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+6w=228
We move all terms to the left:
2w^2+6w-(228)=0
a = 2; b = 6; c = -228;
Δ = b2-4ac
Δ = 62-4·2·(-228)
Δ = 1860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1860}=\sqrt{4*465}=\sqrt{4}*\sqrt{465}=2\sqrt{465}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{465}}{2*2}=\frac{-6-2\sqrt{465}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{465}}{2*2}=\frac{-6+2\sqrt{465}}{4} $
| 4r-32=20 | | -4x-10=x-2x+5 | | 2a(=3a+3) | | x4.4=44 | | 0.25x^2+1.5=-10.75 | | x2-3x+810=0 | | 2/3x-+6/3=-2/3 | | 1250/1.06=2x/2.045 | | 0.50x=0.45(30)=35.5 | | X-18x=90 | | -(4-2n)=2(2n+5) | | -(4-2n=2(2n+5) | | 7x-17=8x+3 | | 2x-13=1/4(2x-40) | | 8c+7=-3c=37 | | 4(z=5)=35 | | 4(4x+6)+5(2x+5)=101 | | (-7+5i)(-9-11i)=0 | | 6(4x-8)-5x+7=35 | | (7+5i)-(-9-11i)=0 | | 2(x-7)-4=-18 | | ×+y=40 | | 9x+5=7-9 | | (17+5n)4=0 | | y+×=40 | | 6+4x-5-3=1+5x | | 1/2(4x+10)=3 | | -4(4x+5)=44 | | 2(4x+2)=-3(5x-2) | | (5x+12)=90 | | -11r-8=7r | | 4(2x+9)=-26+14 |